A significantly greater number of students fail science,
engineering and math courses that are taught lecture-style than fail in classes
incorporating so-called active learning that expects them to participate in
discussions and problem-solving beyond what they’ve memorized.
Active learning also improves exam performance – in some
cases enough to change grades by half a letter or more so a B-plus, for
example, becomes an A-minus.
Those findings are from the largest and most comprehensive
analysis ever published of studies comparing lecturing to active learning in
undergraduate education, said Scott Freeman,
a University of Washington principal lecturer in biology. He’s lead author
of a paper in the Proceedings of the National Academy
of Sciences the week of May 12.
Freeman and his co-authors based their findings on 225
studies of undergraduate education across all of the “STEM” areas: science,
technology, engineering and mathematics. They found that 55 percent more
students fail lecture-based courses than classes with at least some active
learning. Two previous studies looked only at subsets of the STEM areas and
none before considered failure rates.
On average across all the studies, a little more than
one-third of students in traditional lecture classes failed – that is, they
either withdrew or got Fs or Ds, which generally means they were ineligible to
take more advanced courses. On average with active learning, a little more than
one-fifth of students failed.
“If you have a course with 100 students signed up, about 34
fail if they get lectured to but only 22 fail if they do active learning
according to our analysis,” Freeman said. “There are hundreds of thousands of
students taking STEM courses in U.S. colleges every year, so we’re talking
about tens of thousands of students who could stay in STEM majors instead of
flunking out – every year.”
This could go a long way toward meeting national calls like
the one from the President’s Council of Advisors on Science and Technology
saying the U.S. needs a million more STEM majors in the future, Freeman said.
Attempts by college faculty to use active learning, long
popular in K-12 classrooms, started taking off in the mid-1990s, Freeman said,
though lecturing still dominates.
“We’ve got to stop killing student performance and interest
in science by lecturing and instead help them think like scientists,” he said.
Active learning fully integrated into all UW introductory
bio courses – serving more than 2,800 students – as of Autumn Quarter 2014.
Learn more
from the College of Arts & Sciences.
In introduction to biology courses, Freeman’s largest UW
class had 700 students, he expects students to read their $200 textbooks and
arrive in class knowing the material for the day. Quizzes on the readings the
night before keep their feet to the fire.
“These students got into college by being ferocious
memorizers so we don’t need to spend class time going over what they’ve already
read,” Freeman says. “A reading assignment on how sperm and eggs form might
then lead me to ask the class how male contraceptives might work. After giving
them time to come up with their own ideas and rationale, I might give them a
couple more minutes to discuss it with each other, and then I call on students
randomly to start the discussion.”
Knowing they could get called on at any time encourages
students to stay focused.
Having students use clickers – hand-held wireless devices –
to answer multiple-choice questions in class is another example of how active
learning keeps students engaged.
“We characterize it as, ‘Ask, don’t tell,’” said Mary Wenderoth, a UW
principal lecturer and a co-author on the paper.
For the paper, more than 640 studies comparing lecturing
with some kind of active learning were examined by Freeman, Wenderoth and their
other co-authors, Sarah Eddy, Miles McDonough, Nnadozie Okoroafor and Hannah
Jordt, all with the UW biology department, and Michelle Smith with the
University of Maine. The studies, conducted at four-year and community colleges
mainly in the U.S., appeared in STEM education journals, databases,
dissertations and conference proceedings.
Some 225 of those studies met the standards to be included
in the analysis including: assurances the groups of students being compared
were equally qualified and able; that instructors or groups of instructors were
the same; and that exams given to measure performance were either exactly alike
or used questions pulled from the same pool of questions each time.
The data were considered using meta-analysis, an approach
long used in fields such as biomedicine to determine the effectiveness of a
treatment based on studies with a variety of patient groups, providers and ways
of administering the therapy or drugs.
About grade improvement, the findings showed improvements on
exams increased an average of 6 percent. Using grading typical in UW’s
introductory biology, physics and chemistry courses, a gain of 6 percent would
have raised students half a grade turning a C-plus into a B-minus, for example,
or a B-plus into an A-minus.
If the failure rates of 34 percent for lecturing and 22
percent in classes with some active learning were applied to the 7 million U.S.
undergraduates who say they want to pursue STEM majors, some 2.38 million
students would fail lecture-style courses vs. 1.54 million with active
learning. That’s 840,000 additional students failing under lecturing, a
difference of 55 percent compared to the failure rate of active learning.
“That 840,000 students is a large portion of the million
additional STEM majors the president’s council called for,” Freeman said.
Community colleges and universities could help faculty
incorporate effective active learning by providing guidance – the UW, for
instance, has a Center for
Teaching and Learning to share expertise – as well as rewards,
Freeman said.
No comments:
Post a Comment